

KATIE CROCKETT ROB PARA JR. CHRIS LEE CHRISTINA BAZELMANS

ARCHITECT | LAMOUREUX PAGANO & ASSOCIATES ARCHITECTS

CHRIS SCHAFFNER | CARRIE HAVEY | ANTHONY HARDMAN | JACOB SAVONA

SUSTAINABILITY CONSULTANT | THE GREEN ENGINEER

KEVIN SEAMAN

MECHANICAL ENGINEER | SEAMAN ENGINEERING CORP.

AZIM RAWJI

ELECTRICAL ENGINEER | ART ENGINEERING

LYNNE GIESECKE | LAUREN SCHUNK

LANDSCAPE ARCHITECT | STUDIO 2112

MATT BRASSARD

CIVIL ENGINEER | NITSCH ENGINEERING

Home \ Doherty Memorial High School Building Project

Meeting Minutes Community Feedback Preliminary Design Program

December 23, 2020

October 5, 2020 Public Sustainability Workshop Summary:

LPAAVExecutive Summary (PDF) Sustainability Workshop Presentation (PDF)

· Recording of Sustainability Workshop:

DOHERTY HIGH

2020 Doherty High School Graduates

Advanced Placement

Alumni Transcript Request Form

Athletics

DHS Student Schedule – Two Week Cycle (PDF)

Doherty Memorial High School Building

Engineering and Technology Academy

Guidance

Health Center

Library

Student Athlete Program

Voting PSA

Instructional Focus

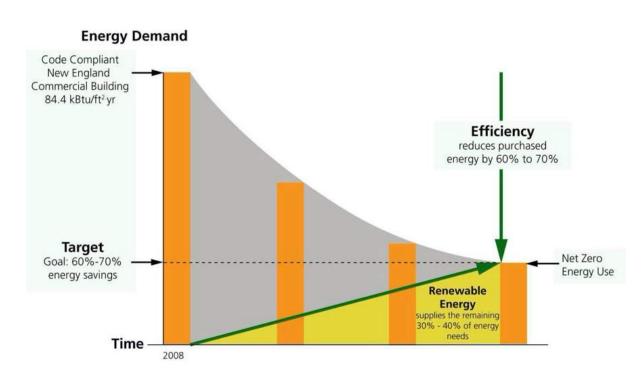
TOPIC 1: ENERGY

- Fossil Fuel Reduction
- Emergency Resilience
- Renewable Energy
- Future Battery Storage

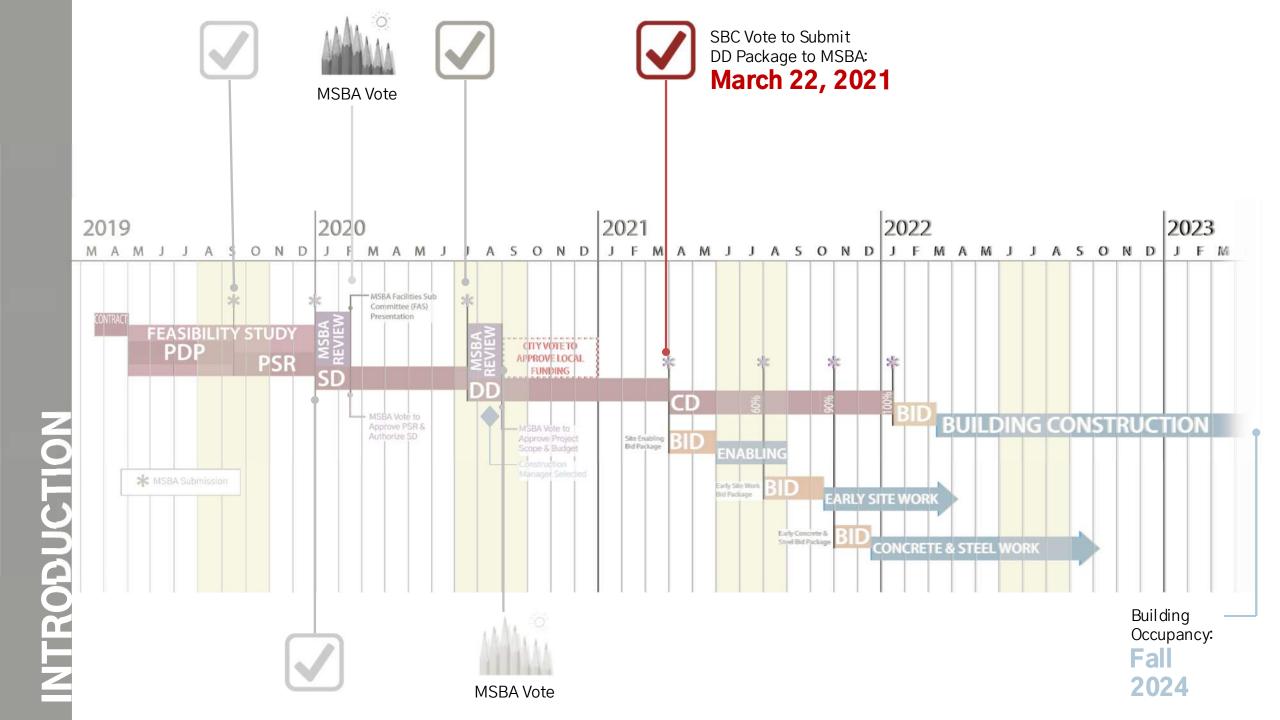
TOPIC 2: SITE

- Tree Removal / Replacement Strategy
- Biodiversity
- Heat Island Effect
- Pedestrian, Bike and Micro-Mobility

Community | Resilience | Sustainability


I. A Green Heart for Worcester: Our Values and Vision	0	15
II. The Green Worcester Approach: Stewardship, Transparency, and Accountability		31
III. 100% Clean and Affordable Energy		43
IV. Connected Green and Blue Spaces with Healthy Natural Systems		53
V. Net Zero and Climate Resilient Buildings		65
VI. Sustainable Transportation Choices		75
VII. One Water – Integrated Water Management	o n e	91
VIII. Towards Zero Waste	O	103
IX. Sustainable Food Systems	# /A	113
X. Pollution Prevention		121
XI. Climate Change Resilience		127
XII. Sustainability, Resilience, and Green Education in All Policies	*	137

Pathways to Low/Zero Carbon


General Approach

- Low EUI
- Decarbonization of Heat
- Solar on Site
- Community Renewables

Source: Federal R&D Agenda for Zero-Net Energy high Performance Green Buildings, National Science and Technology Council, October 2008

1. LEED VERSION 4 BUILDING DESIGN & CONSTRUCTION: SCHOOLS

(MSBA REQUIRES MINIMUM LEED "CERTIFIED" RATING)

2. EXCEED MA ENERGY CODE BY MINIMUM 20%

(USING OPTIMIZE ENERGY PERFORMANCE CREDIT)

3. TARGETING LEED SILVER CERTIFICATION

(50-59 POINTS)

TOPIC 1: ENERGY

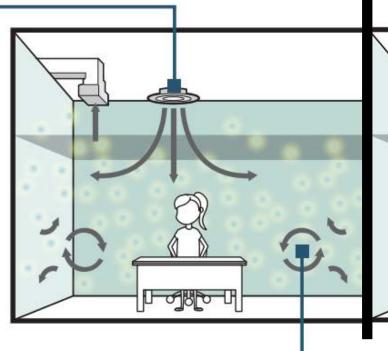
- Fossil Fuel Reduction
- Emergency Resilience
- Renewable Energy
- Future Battery Storage

800 kw

ELECTRICITY TARGET PROVIDED BY ROOFTOP SOLAR PV ARRAY

ENERGY USE REDUCTION BEYOND CODE BASELINE ±35%

38 Kbtu /SF /yr


TARGET SITE ENERGY USE INTENSITY (EUI)

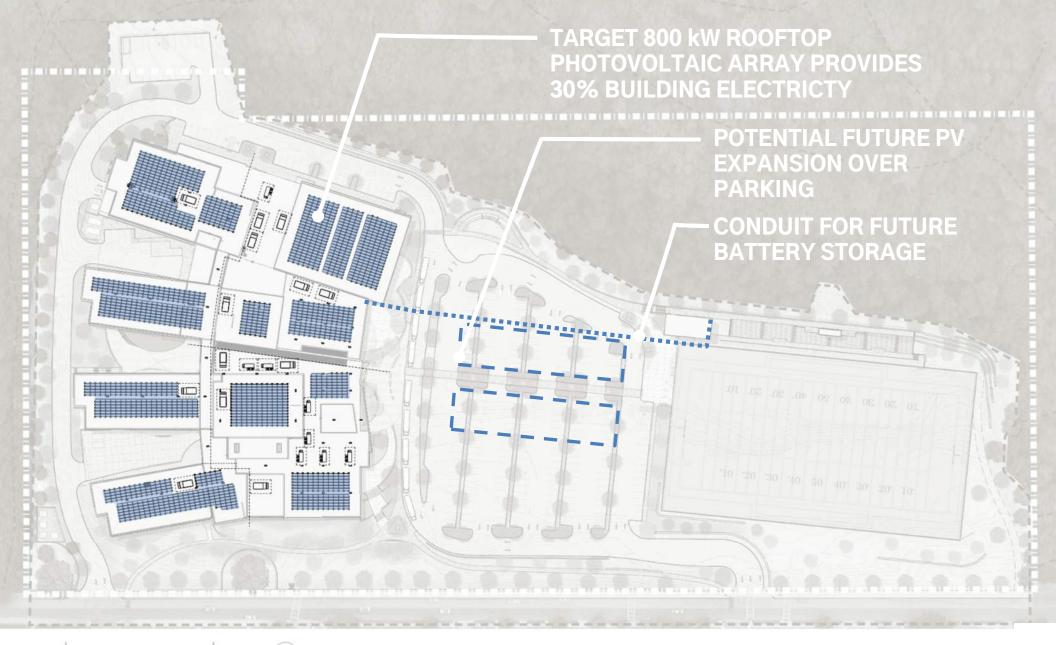
R VALUES OF SUPER-INSULATED WALLS/ROOF 25^k/_L/45^e_F

TRADITIONAL MIXING VENTILATION

DISPLACEMENT CHILLED BEAM CABINETS

Ceiling diffusers push 55°F air at high speed

+ Supply at breathing level + Conditions occupied area


Occupied Zone + Provides both heating and cooling + Substantial airflow and ductwork reduction (≤ half)

Temperature and pollutants are mixed uniformly throughout

- ✓ LOWER NOISE LEVELS
- ✓ LOWER MAINTENANCE
- ✓ HIGHER INDOOR AIR QUALITY
- / IMPROVED THERMAL COMFORT
- ✓ MORE EFFICIENT
- / LOWER OPERATING COSTS

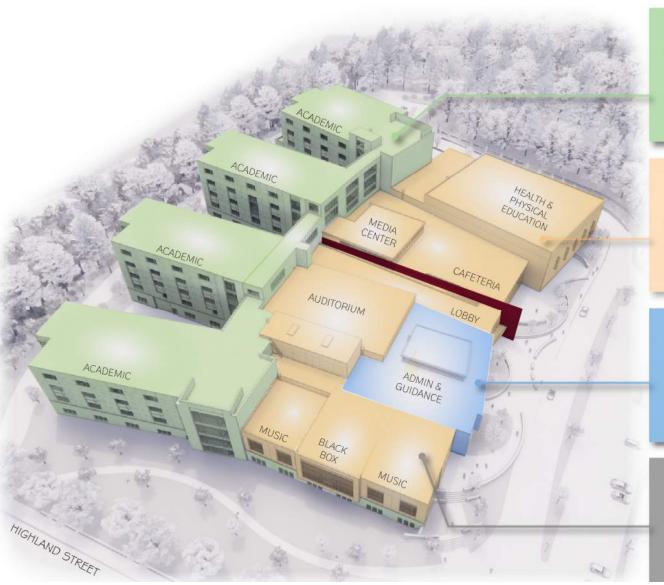
Graphics from Price Industries

1. SUSTAINABILITY OF MAINTENANCE

(MINIMIZE STAFFING / FUNDING RESOURCES REQUIRED)

2. INITIAL & LONG-TERM COSTS

(CONSTRUCTION / UTILITY COSTS)


3. APPROPRIATE SYSTEM FOR A LEARNING ENVIRONMENT

(INDOOR AIR QUALITY AND NOISE REDUCTION CONSIDERATIONS)

4. EMERGENCY RESILIENCE

(REDUNDANT FUEL SOURCES / FUNCTION AS A WARMING SHELTER)

					<u></u>		
			"As Designed"	Hybrid	Design Adjustments to Reduce Gas Load	Full Electric-No Fossil Fuels	Full Electric-No Fossil Fuels
			BASELINE	FUTURE CONVERSION	REDESIGN	ELECTRIC BOILERS	ALL VRF
	Project Area	(ft ²)	421,858	421,858	421,858	421,858	421,858
	Discount Rate		2.50%	2.50%	2.50%	2.50%	2.50%
	Expected Service Life (n) - HVAC		20.0	20.0	20	20	15
		Install Cost HVAC (\$) 3	\$ 21,012,747	\$ 21,223,676	\$ 21,645,534	\$ 21,434,605	\$ 20,590,889
	Initial Costs	Additional Costs Electrical (\$) 3	\$ 0	\$ 0	\$ 1,500,000	\$ 2,500,000	\$ 2,500,000
INITIAL STUDY		Total Initial Costs (\$)	\$ 21,012,747	\$ 21,223,676	\$ 23,145,534	\$ 23,934,605	\$ 23,090,889
	Operating Costs	Annual Maintenance Costs (\$)	\$97,027	\$ 97,027	\$ 118,120	\$ 97,027	\$ 139,213
		Natural Gas Cost (\$)2	\$49,054	\$ 46,110	\$ 12,263	\$ 0	\$ 0
		Electricity Cost (\$)1	\$513,451	\$ 519,408	\$ 602,811	\$ 662,925	\$ 619,253
		Total Annual Operating Cost (\$)	\$659,532	\$ 662,546	\$ 733,194	\$ 759,953	\$ 758,466
	TEAC Calcs	Annual Operating Cost (\$)	\$ 659,532	\$ 662,546	\$ 733,194	\$ 759,953	\$ 758,466
	TLAC Calcs	Amortized Cost - HVAC + Electrical	\$ 1,347,907	\$ 1,361,438	\$ 1,469,913	\$ 1,510,658	\$ 1,798,743
LODY	Total Equivalent Annual Cost (\$)		\$ 2,007,439	\$ 2,023,984	\$ 2,203,107	\$ 2,270,611	\$ 2,557,209
	TEAC (Incren	nental Cost/SF)	\$ 4.76	\$ 4.80	\$ 5.22	\$ 5.38	\$ 6.06
	Electricity Co	nsumption (kWh)	3,111,823	3,147,928	3,653,398	4,017,729	3,753,047
INITIAL STUDY	Gas Consumption (therms)		54,504	51,234	13,626	0	0
	GHG Emissions (MTCO2e) - Energy Star Carbon Factors		1031	1023	943	958	895
\triangleleft	GHG Emissions (MTCO2e) - 40% Green Power		586 289	572	421	383	358
	GHG Emission	GHG Emissions (MTCO2e) - 100% Green Power		272	72	0	0
	Source Energy Use Intensity (kBTU/SF)		83.8	83.8	85.8	90.7	84.7
	Site Energy L	Ise Intensity (kBTU/SF) 4	38.0	37.5	32.7	32.4	30.2

DISPLACEMENT CHILLED BEAMS WITH HYDRONIC HEAT & DEDICATED OUTDOOR AIR HEAT PUMP SYSTEM

SUPERIOR VENTILATION EFFECTIVENESS & INDOOR AIR QUALITY

AIR SOURCE HEAT PUMP ROOF TOP UNITS

HYDRONIC HEAT BACK-UP

VARIABLE REFRIGERANT FLOW (VRF) HEAT PUMPS WITH DEDICATED OUTDOOR AIR HEAT PUMP SYSTEM

IMPROVED INDIVIDUAL ZONE CONTROL

AIR COOLED HEAT RECOVERY CHILLER / HEATER

SIMULTANEOUS HOT AND COLD WATER FOR ALL BUILDING SYSTEMS

BASELINE SUSTAINABLE ENVELOPE / SYSTEMS

- **HEAT RECOVERY CHILLER**
- **VRF HEAT PUMPS**
- + AIR SOURCE HEAT PUMP RTU'S

85% REDUCTION IN PROJECTED FOSSIL FUEL USE

		Baseline	REDESIGN - DD
Project Area (ft ²)		421,858	421,858
Discount Rate		2.50%	2.50%
Expected Service Life (n) - HVAC		20.0	19
	Install Cost HVAC (\$) 3	\$ 21,012,747	\$ 21,856,463
Initial Costs	Additional Costs Electrical (\$) 3	\$ 0	\$ 1,500,000
	Total Initial Costs (\$)	\$ 21,012,747	\$ 23,356,463
	Annual Maintenance Costs (\$)	\$97,027	\$ 126,557
	Natural Gas Cost (\$)2	\$49,054	\$ 7,358
Operating Costs	Electricity Cost (\$)1	\$513,451	\$ 589,182
	Total Annual Operating Cost (\$)	\$659,532	\$ 723,097
TE 4.0.0.1	Annual Operating Cost (\$)	\$ 659,532	\$ 723,097
TEAC Calcs	Amortized Cost - HVAC + Electrical	\$ 1,347,907	\$ 1,540,565
Total Equivalent Annual Cost (\$)		\$ 2,007,439	\$ 2,263,662
TEAC (Incremental Cost/SF)		\$ 4.76	\$ 5.37
Electricity Consumption (kWh)		3,111,823	3,570,798
Gas Consumption (therms)		54,504	8,176
GHG Emissions (MTCO2e) - Energy Star Carbon Factors		1031	895
GHG Emissions (MTCO2e) - 40% Green Power		586	384
GHG Emissions (MTCO2e) - 100% Green Power		289	43
Source Energy Use Intensity (kBTU/SF)		83.8	82.6
Site Energy Use Intensity (kBTU/SF) 4		38.0	30.7

TOPIC 2: SITE

- Tree Removal and Replacement Strategy
- Biodiversity
- Heat Island Effect
- Pedestrian, Bike and Micro-Mobility

1. INCREASED BIODIVERSITY

(REMOVE INVASIVE SPECIES / AVOID ASIAN LONGHORN BEETLE SUSCEPTIBLE PLANTINGS)

2. EXCEED EXISTING CANOPY WITHIN 10 YEARS

(150,000 SF OF NEW TREE CANOPY, 12% INCREASE FROM EXISTING CANOPY)

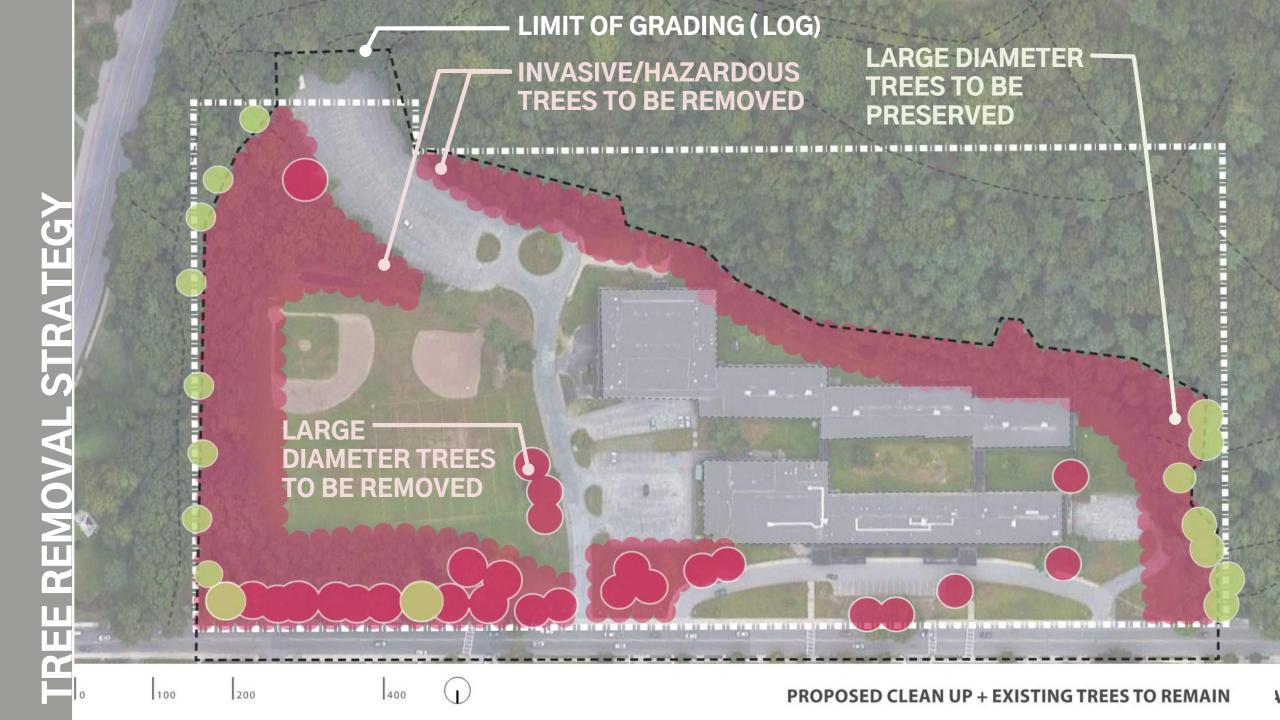
3. HEAT ISLAND REDUCTION STRATEGIES

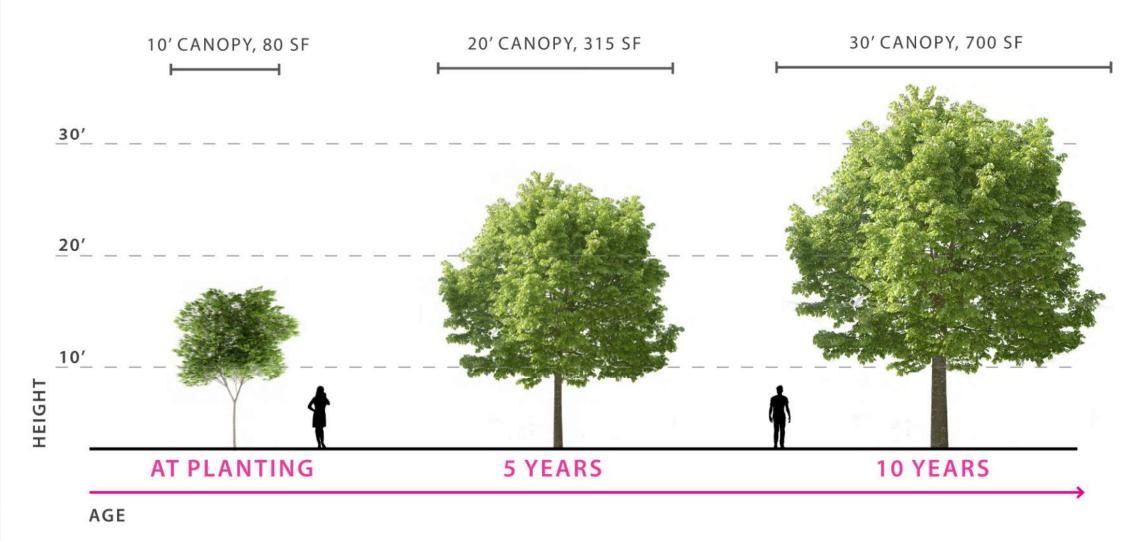
(WHITE ROOF, INCREASED TREE CANOPY, PARKING BELOW BUILDING)

4. PERMEABLE SYNTHETIC TURF FIELD

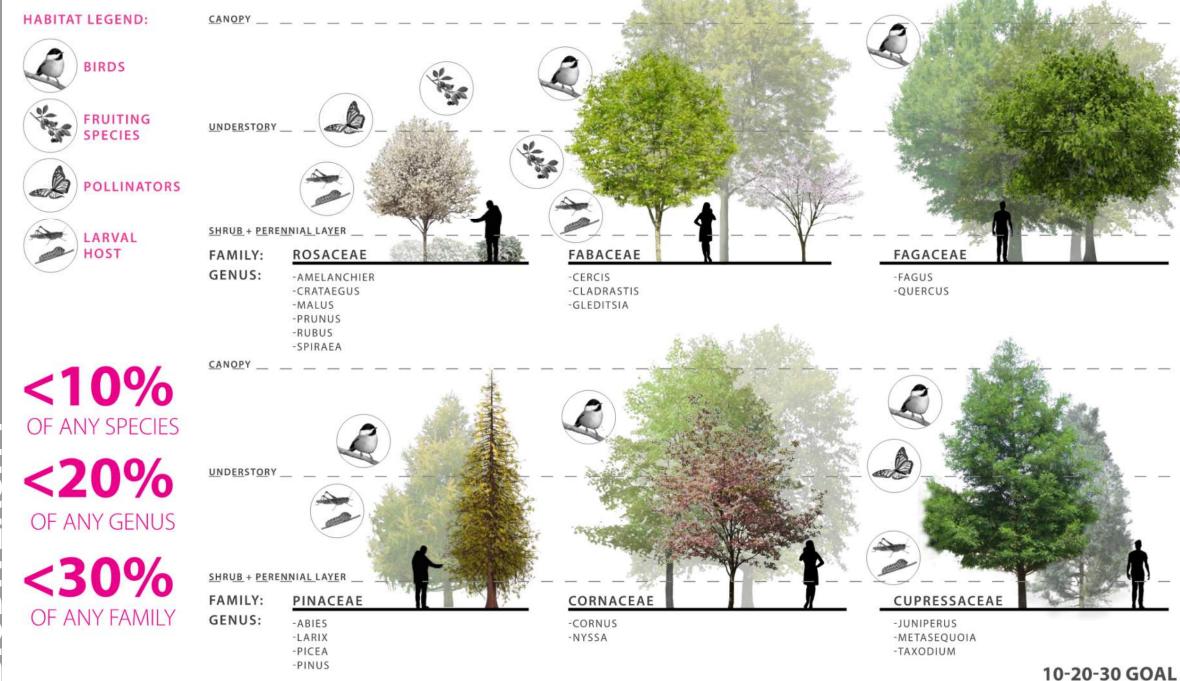
(HIGHER UTILIZATION, LOWER MAINTENANCE THAN NATURAL TURF)

+300


NEW TREES WILL BE PLANTED AS PART OF THE PROJECT SCOPE


AREA OF TREE CANOPY
AFTER 10 YEARS OF GROWTH
(WITHIN LIMIT OF GRADING)

150,000 SF


+12%

INCREASE IN TREE CANOPY COVERAGE AFTER 10 YEARS OF GROWTH

61,600 SF

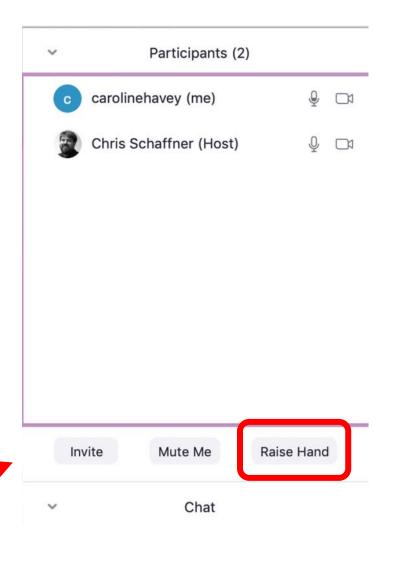
HIGH REFLECTANCE CONCRETE PAVERS & SIDEWALKS

SOLAR REFLECTANCE INDEX (SRI) LIGHT COLORED ROOF 82° ROOF

115

PARKING SPACES LOCATED BENEATH THE BUILDING

PROPOSED SITE PLAN



TO ASK QUESTIONS:

- PLEASE RAISE YOUR HAND OR UTILIZE THE CHAT FEATURE
- IF JOINING BY PHONE:
 - *9 RAISE HAND
 - *6 TOGGLE MUTE/UNMUTE
- PLEASE ANNOUNCE YOUR NAME BEFORE YOUR QUESTION/COMMENT
- PLEASE RE-MUTE YOURSELF AFTER YOUR TURN

FONTAINE +DIMEO

AECOM TISHMAN

Additional Comments/Questions?

www.lpaa.com/get-in-touch